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COMPACT HYPERCOMPLEX
AND QUATERNIONIC MANIFOLDS

DOMINIC JOYCE

1. Intreduction

This paper concerns hypercomplex manifolds ({3, §61, {4, pp. 137-139])
and quaternionic manifolds ([3, §1], [4, pp. 135-136]), which are mani-
folds with a GL(n, H)- and a GL(n, H)H" -structure respectively, pre-
served by a torsion-free connection. It is in two parts, and each part
presents a way of constructing compact examples of these manifolds.

In the first part a method is given similar to those used by Gibbons
and Hawking to construct hyper-Kihler manifolds and by LeBrun [2] to
construct scalar-flat Kihler surfaces. It will be shown that given a hyper-
complex or quaternionic manifold M, a Lie group G, an action ¥ of
G on M that preserves the structure, and a W-invariant quaternionic G-
connection on a principal G-bundle P over M, one can, subject to a
certain condition, define a new hypercomplex or quaternionic manifold
N thatis M “twisted by” the G-bundle P . Here a quaternionic connec-
tion is one satisfying a curvature condition that naturally generalizes the
instanton equations in the four-dimensional case.

In the second part the theory of homogeneous hypercomplex and quater-
nionic manifolds will be described. This is based upon the theory of ho-
mogeneous complex manifolds given in [5], [8]. The case of homogeneous
hypercomplex structures on groups has already been described by Spindel
et al. [6].

Both of these methods give many compact, nonsingular, simply-
connected hypercomplex and quaternionic manifolds in dimensions greater
than four, which are not products or joins of other manifolds, and are not
(even locally) hyper-Kihler or quaternionic Kahler. (That is, the structure
group cannot be reduced to SP(n) or SP(xn)SP(1).) We believe that these
are the first such examples to be described, other than the homogeneous
hypercomplex groups in [6].
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This work is complementary to [1], which constructs hypercomplex and
quaternionic manifolds using quotient techniques. The author would like
to thank his supervisor Simon Donaldson for his ideas and advice, Andrew
Swann for some helpful suggestions, and the SERC for financial support.

2. A construction for hypercomplex and quaternionic manifolds

Suppose that M is a quaternionic manifold, and let Z be the twistor
space of M. Then Z is a complex manifold that is a fiber bundle over
M with fibers CP' of normal bundle n@ (1), and has an antiholomorphic
involution ¢ that fixes the fibers. Let G be a Lie group, P a principal
G-bundle over M, and A a connection on P. The curvature Q of A4 is
a 2-form on M with values in ad P, where ad P is the bundle associated
to the adjoint representation of G on the Lie algebra g of G.

At each point of M there is a family of complex structures from the
quaternionic structure, and for each such complex structure 7, the 2-forms
on M can be decomposed into the +1-and —1-eigenspaces of [; the +1
eigenspace corresponds to the (1, 1)-forms and the —1 eigenspace to the
(2, 0)- and the (0, 2)-forms. (Note that we are considering real 2-forms,
not complex ones.)

We define a quaternionic connection A on P to be a connection whose
curvature Q is in the +1-eigenspace for each 7 in the family at every
point. This definition coincides with the definition of a quaternionic con-
nection given in [3, Definition 7.1]. Moreover, when N is four-dimen-
sional, a quaternionic connection is just an (anti-self-dual) instanton. So
quaternionic connections are the natural generalization to quaternionic
manifolds in all dimensions of the notion of an instanton in four dimen-
sions.

Quaternionic connections are interesting because the following general-
ization of the Ward correspondence applied to them:

The Ward correspondence. Let A be a quaternionic manifold, Z the
twistor space of M, G a Lie group, and P a principal G-bundle over
M. Let P be the 11ft of P to Z and P° the complexification of P with
fiber G°, the complexification of G. Then quaternionic connectlons A
on P are in one-to-one correspondence with real holomorphic structures
on the G°-bundles P° which are trivial on the fibers of Z .

By a real holomorphic structure we mean a holomorphic structure that
changes sign under the composition of the real structure of Z and complex
conjugation on the fibers of P°.
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Because P is a principal bundle there is an action of G' on P, which
will be called @, that acts transitively on the fibers. Let ¥: G — Aut(M)
be an action of G upon A . We choose a lifting of ¥ to P, which will
also be called ¥, preserving the principal bundle structure (i.e., commut-
ing with ®). This lifting is not necessarily unique up to homotopy.

We shall now prove two theorems, which have very similar statements
and proofs.

Theorem 2.1. Let M, P, ®, and ¥ be as above, and let A be a
Y-invariant quaternionic connection on P. Suppose ¥(G) acts freely on
P. Then the manifold N = P/Y(G) has a natural (possibly singular)
quaternionic structure, which is nonsingular wherever the Lie algebra of
Y(G) is transverse to the horizontal subspaces of A in P.

Theorem 2.2. Let M, P, ®, and ¥ be as above, and let A be a
Y-invariant guaternionic connection on P. Let A: G — Aut(P) be the
diagonal action of G on P, given by A(g) = ®(g)¥Y(g). (This is a group
homomorphism because ® and ¥ commute.) Suppose that A(G) acts
freely on P. Then the manifold N = P/A(G) has a natural (possibly sin-
gular) quaternionic structure, which is nonsingular wherever the Lie algebra
of A(G) is transverse to the horizontal subspaces of A in P.

If M is hypercomplex rather than just quaternionic, and ¥(G) pre-
serves the hypercomplex structure, then the manifolds N constructed in
Theorems 2.1 and 2.2 will also be hypercomplex. This is because if M is
hypercomplex then its twistor space Z fibers over CP! , and this induces
a fibration over CP' of the twistor space W of N constructed in the
proof below. The proofs of Theorems 2.1 and 2.2 are almost identical, so
only the first will be given; to get the second, replace ¥ by A throughout.

Proof of Theorem 2.1. By the Ward correspondence, the quaternionic
connection A on P defines a holomorphic structure on_the bundle Pe
over Z. The action ¥ on P lifts to P and then to ¥ on P and,
as A is W-invariant, this action preserves the holomorphic structure. We
define the antiholomorphic involution & of P to be the composition of
the antiholomorphic involution ¢ on Z and complex conjugation on the
fibers G°. Then ¥ commutes with & . B

The action ¥ of G can be complex1ﬁed to an actlon ¥ of G° on

. Ideally we would like to say that P /‘Pc( ) P /‘P( ) because each
‘i’c(G )-orbit in P° contains exactly one ‘P(G) -orbit in P; thus P/‘P( )
would also be the quotient of a complex manifold by a complex group,
and so would have a complex structure. However, this involves us in two
sorts of problems: first, some ¥°(G°)-orbits might contain no G-orbits
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in P, or more than one, and secondly , as G° is a noncompact group,
topological restrictions on its action are necessary for the quotient even to
be Hausdorff,

We shall overcome these problems as follows. Let U be a small open
neighborhood of G in G°. We require that U should be invariant
under complex conjugation and the action of G on the right, and that
the closure of U in G° should be compact. We also require that U
should be sufficiently small such that if x,, x, € P, u,, uy € U, and
‘i’”(u )X, = ‘i’c(uz)x2 , then x,, x, are the same ‘P(G)-orblt in P. (This
is possible at least for compact subsets of P.~ Here the transversality con-
dition is needed to ensure that the action ¥(ig) is transverse to P in
P°, without which the result might fail.)

Let S C P° be the set ¥°(U)[P]. Then S is an open neighborhood of
P in P° , and fibers over P / q’(G) with fiber U . (Here we use the property
of U given in the previous paragraph, and also the right G-invariance of
U .) As the fibers are locally ‘i‘c( G°)-orbits, they are complex submanifolds
and the fibration is holomorphic.~ Since U is compact, the fibration is
topologically well behaved. So P /¥(G) is the base space of a holomorphic
fiber bundle, and is thus a complex manifold. Also, & restrictsto S, where
it preserves the fibers, so it descends to an antiholomorphic involution ¢’
of P/¥(G).

Define W = ﬁ/q’(G). Then, from above, wherever W is transverse
to the horizontal subspaces of A, W is the base space of a holomorphic
fiber bundle §, and so has a complex structure and an antiholomorphic
involution. Moreover, W fibers over N = P/¥(G) with fiber CP', since
dividing by ¥(G) commutes with passage from M to the twistor space
Z . The normal bundle of fibers is n#(1). This is because the bundle P°
is trivial over real lines as a holomorphic bundle, and so the normal bundle
of a real line in P° is n@(1) + ¢° ® @ . But to get the normal bundle of
the corresponding fiber of W we have to divide by the part tangent to the
orbit of G°, which is clearly isomorphic to g° ® @, leaving n@(1).

So W is the twistor space for a quaternionic structure on N, which
is nonsingular wherever W(G) is transverse to the horizontal subspaces of
A. qed.

We note that it is possible to give a rigorous proof of this theorem
without invoking the Ward correspondence, by showing that the Nijenhuis
tensor of each of the thrée almost complex structures on the associated
bundle of N vanishes, and thus that they are integrable. It is a long but
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elementary calculation that starts from the fact that the curvature is of
type (1, 1) with respect to each complex structure, and has the advantage
of avoiding technical problems with complexifying group actions.

2.1. Another construction. We briefly describe a completely different
way of using instantons to make hypercomplex and quaternionic mani-
folds. It is well known that the moduli spaces of instantons on a hyper-
Kihler 4-manifold are hyper-Kahler, and that one way of looking at this
is to regard the moduli spaces as infinite-dimensional hyper-Kéhler quo-
tients of the space of all smooth connections by the gauge group, with the
self-duality equations as the moment maps. It is clear that the moduli
spaces of instanions on a hypercomplex 4-manifold can be regarded as
hypercomplex quotients (in the sense of [1]) in the same way, and thus
that the moduli spaces will be hypercomplex manifolds, but not in general
compact.

Let X be a hypercomplex Hopf surface. Then U(2) acts transitively on
X permuting the complex structures, in the same way that H" acts upon its
own complex structures by left multiplication. Let .# be a moduli space
of instantons over X ; then .# is hypercomplex. The action of U(2)
on X induces an action of U(2) upon .# that permutes the complex
structures of .# in the same way. It is not difficult to see that the quotient
of .# by this action of U(2) will in fact be a quaternionic manifold, where
it is nonsingular. We do not know if any of the quaternionic manifolds
arising in this fashion can be made compact.

3. Compact hypercomplex and quaternionic manifolds

In this section we will apply Theorem 2.2 to construct compact, non-
singular, simply-connected examples of hypercomplex and quaternionic
manifolds. Theorem 2.2 is actually more useful than Theorem 2.1, be-
cause there are many situations in which the image of the Lie algebra
action ¥ is actually contained in the horizontal subspaces of the connec-
tion A4, and therefore the transversality condition of Theorem 2.1 does
not hold anywhere, but that of Theorem 2.2 holds everywhere and so the
resulting manifold has a nonsingular quaternionic structure.

Example 1. Let M be a compact simply-connected quaternionic
manifold, and suppose that P is a nontrivial, primitive U(1)-bundle
(and so, has simply-connected total space) carrying a quaternionic
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connection 4. For instance, M could be CP? and the instanton could
be the one with curvature form the Kéhler form of the Fubini-Study
metric; this generalizes to the higher-dimensional symmetric spaces
SU(n + 2)/S(U(n) x U(2)). Or M could be a self-dual metric on nCp?
and the instanton that one arising from the harmonic form representing
any integral, primitive, nonzero two-dimensional cohomology class.

Now over any quaternionic manifold M there is a bundle % (M) with
fiber H"/{%1} called the associated bundle, which has a hypercomplex
structure upon its total space. Salamon defines this bundle in [3, Corollary
7.4], and calls it Y. It is the projectivization of % (M) with respect to
any of the complex structures which is the twistor space Z of M.

The bundle Z (M) is hypercomplex, but not yet compact. Let r be a
positive real constant. Then the integers Z act on % (M) by multiplication
by e, n e Z, and dividing by this action gives a compact hypercomplex
manifold #(M)/Z which is not simply-connected, and fibers over M
with fiber the Hopf surface. ,

Let W be the action of U(1) on Z(M)/Z of dilation on the fibers,
that is, let ¢ act by multiplication by ¢/*". This action preserves
the fibration over M and thus the lift of the instanton 4 to #Z(M).
Now applying Theorem 2.2 we get a new hypercomplex manifold which is
% (M)/Z twisted by the nontrivial U(1)-bundle P. The new manifold ¥
is compact and simply-connected, because twisting by P kills the funda-
mental group as P is primitive. It also fibers over M with fiber the Hopf
surface, but the U(1)-component of the fibration is now nontrivial.

Hopf surfaces will emerge as a recurrent theme in most of the rest of
the examples we shall give. An interesting point about the case when M
is CP? is that the resulting manifold N is homogeneous, that is, has
transitive symmetry group. In fact &V is SU(3), and has symmetry group
SU(3) x U(1). Homogeneous hypercomplex and quaternionic manifolds
will be the topic of the next sections.

A variation on the above is, instead of working with the standard R: C
H", to choose a more arbitrary one-parameter subgroup of H". Let this
act on Z (M) by multiplication, and divide % (M) by a sublattice of this
subgroup. One ends up with a U(1)-action upon the quotient of %/ (M)
by a different action of Z.

The difference in this case is that the actions of R and Z do not have
to preserve the individual complex structures but only the family, so we
are effectively regarding % (M) as a quaternionic manifold instead of a
hypercomplex manifold. The manifold that is then constructed is compact,
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simply-connected, and quaternionic but not (for general one-parameter
subgroups) hypercomplex, and will fiber over M with fiber a Hopf surface,
but this time a Hopf surface that is not the quotient of H\ {0} by a group
of dilations, but by a group generated by left multiplication by a general
nonunit quaternion.

Example 2. Let M, and M, be compact, simply-connected quater-
nionic manifolds. Now the product of two quaternionic manifolds is not
quaternionic, but there is a notion analogous to a product for quaternionic
manifolds, called the join. The join M, x M, of M, M, is defined to be
the quaternionic manifold with associated bundle % (M) x % (M,) . This
is an associated bundle because the product of the two hypercomplex man-
ifolds Z (M ;) 1s hypercomplex, and has an H"-action given by combining
the H"-actions on the factors.

Then M, * M, is not compact, but fibers over M, x M, with fiber
(H\ {0})/{£1}. Note that dim M, « M, = dim M, + dim M, + 4. Let
r > 0 be a real number. We may make M, x M, compact by dividing
it by the integers, acting by dilation by e" in the fibers (H\ {0})/{1}
to get a bundle over M, x M, with fiber the Hopf surface. This action
of the integers is given on the associated bundle #% (M) x % (M,) by
multiplication by e/ —rn/2
factor.

Thus there are simple examples of compact nonsingular quaternionic
manifolds involving Hopf surfaces; we exclude these because they are not
simply-connected, and also because they are locally the joins of two lower-
dimensional manifolds. However, both of these disadvantages may be
removed by taking a nontrivial, primitive U(l)-instanton on M, or M,
or both, lifting to get a U(1)-instanton on M, x M, , and applying Theorem
2.2 as in Example 1. The action ¥ of U(1l) given on the associated
bundle is: lI’(ew) acts by multiplication by ¢”/*" on the first factor, and
by ¢ %" on the second.

As in Example 1, the transversality condition holds everywhere, and the
result is a nonsingular, compact quaternionic manifold, which is simply-
connected (because the instanton was chosen to be primitive) and fibers
over M, x M, with fiber the Hopf surface. It is not locally the join of
two manifolds, because if it were then by simple-connectedness it would
be globally so as well, and so noncompact.

As examples of suitable pairs M, M,, one could take M, and the
instanton to be any of the possibilities given in Example 1, and M, to be
a quaternionic Kihler Riemannian symmetric space, say, or any compact
self-dual 4-manifold.

in the first factor and by e in the second
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4. Homogeneous hypercomplex manifolds

In the previous section it was shown that SU(3) possesses a family of
homogeneous hypercomplex structures. In this section we will explore the
idea of a homogeneous hypercomplex structure using the structure theory
of Lie groups. We will prove that, given any compact Lie group &, there
exists k with 0 < k < max(3, rkG) such that U(l)k x G admits a
homogeneous hypercomplex structure (Theorem 4.2), and an analogous
statement for homogeneous spaces.

The theory of homogeneous complex structures on compact manifolds
was described in the 1950s by Wang [8] and Samelson [5], and most of
what follows is a straightforward adaptation of material in those papers;
the problem is to find three homogeneous complex structures satisfying
the quaternionic relations.

We note that the results of Theorem 4.2 have already appeared in a
Physics paper by Spindel et al. [6, p. 685, Table 1]. They approach the
problem from the point of view of supersymmetry, and restrict their at-
tention to absolutely parallelized manifolds, so that they consider only hy-
percomplex structures on groups and not on general homogeneous spaces.
The proof we give is different from theirs, and is needed as an introduction
to Theorem 4.4 and §5. We are grateful to Professor Galicki for drawing
this paper to our attention.

4.1. Homogeneous hypercomplex structures on groups. The case of ho-
mogeneous hypercomplex structures on a compact group G of dimension
4n will be described first, for simplicity. Now in his paper [5], Samelson
shows that every compact Lie group G of even dimension has a complex
structure such that left translations are holomorphic mappings. This is
an extension of the well-known theorem of Borel which states that the
quotient of a compact Lie group by its maximal torus always has a homo-
geneous complex structure. We now summarize Samelson’s proof.

Suppose G is a compact Lie group and H is a maximal torus of G,
with Lie algebras g, h respectively. Now as G is compact it has a finite
cover G' which is the product 7 x S of a torus and a semisimple group.
Then lifting H to H' c G', itis clear that H = T x C, where C is a
maximal torus of §'. Thus for our purposes we may treat G as though
it were semisimple, and H as though it were the maximal torus of a
semisimple group, and perform the usual structure theory decomposition
of g relative to h.

When g is a Lie algebra, denote its complexification by §. From the
structure theory of Lie algebras [7, §4.3], the complexified Lie algebra §
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of G is decomposed into root subspaces:

) =6+ 9,

a€A

where A is a finite subset of nonzero elements of §” (the roots), and each
g, is the one-dimensional subspace of g defined by

2) g,={x:x€g,[h,x]=alh)x Yh €b}.

Samelson defines a complex structure on G by choosing a positive sys-
tem of roots [7, p. 280], which is a set P C A satisfying PN (-P) =0,
PU(-P)=A and o, BeP,a+fecA=>a+fcP. Forlet I' bea
complex structure on h. Then if W is the set of (1, O)-forms in § with
respect to I', we can define m as a subset of § by

3) m=W+Zga.
aeP

From structure theory we sce that m is closed under the complexified
Lie bracNket, and thus generates a complex subgroup M of the complexified
group G with Lie algebra m. Samelson shows [5] that G/M is diffeo-
morphic to G, and as G , M are both complex groups, this makes G- a
complex manifold. The complex structure on g is easily described: as real
vector spaces § = g+ m, and this gives an identification g = §/m, which
is a quotient of complex vector spaces and so gives a complex structure
on g. It is clear that m is simply the (1, 0)-forms for the complex struc-
ture on g.

In Theorem 4.2 an analogue of this result for the hypercomplex case
will be given. First we prove a preparatory lemma.

Lemma 4.1. Let G be a compact Lie group, with Lie algebra g. Then
g can be decomposed as

) g=b+D %+ ki,
k=1

k=1

where b is abelian, v, is a subalgebra of g isomorphic to su(2), b+3_, 9,
contains the Lie algebra of a maximal torus of G, and f,,--- ,f, are
(possibly empty) vector subspaces of g, such that foreach k =1,2,--- , n,
f, satisfies the following two conditions:

(i) 9, fi ] = {0} whenever | < k, and
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(ii) f, is closed under the Lie bracket with v, , and the Lie bracket
action of v, on f_ is isomorphic to the sum of m copies of the action of

su(2) on c’ by left multiplication, for some integer m.

Proof. Let H be a maximal torus in G with Lie algebra h, and A,
the set of roots of § relative to h. Let b, = g. Choose a highest root
a, in A, . Then the three-dimensional subspace g, +o_, + [g(1 > 8 g ]
of § is in fact a complex subalgebra of j 1somorphlc to 5[(2 C) and
its intersection with g is a subalgebra isomorphic to su(2). So let v, =
g rzé)gal to_, t [go(l , g_al]) ; then d, is a subalgebra of b, isomorphic to
su(2).

Define b, to the centralizer of 9, in b, ; b, isalso a subalgebra. Define

1

f, by

(5) fi =100 Z 9g +gﬂ+0‘1 )
BEA, :
B+a €4,

where g, is the root subspace for the root f. Then b, decomposes as
by=b,+0, +1,.

This is because for every root f # *a,, g 5 appears as a summand
in either b, or f,, but not both, depending on whether [v,, g 51 is zero
or nonzero respectively. Also, the g +o, APpear as summands in 61 , and

b splits as 80, > §_o,] + (a,)°, of which the first summand comes from

0, and the second summand from 51. Thus from (1) it follows that
by =b, +9, +§, , and hence the result.

Now hnb, is the Lie algebra of a maximal torus for the subgroup of
G generated by b, , and the roots A, of El relative to this subalgebra are
just the roots in A, that are zero on [gal , g_al]. Either b, is abelian (and
hence contained in h) or else we may in exactly the same way choose a
highest root o, and decompose b, as b, =b, +9,+f,.

By repeating this process, we obtain a succession of subalgebras b, -+ ,
v, --,0, and subspaces f,, -+, f, such that b, L =b,+0,+7,,
and b, is

b

n b
9, is isomorphic to su(2), b, is the centralizer of o, in b
abelian. Then, recalling that by = g,

(6) g=b,+Y 0+ f-
i=1 i=1

Putting b = b, gives the decomposition (4). Condition (i) is satisfied
because if / < k then f, C b;, which is the centralizer of ?;; thus [9,, f,]
=0.

i—1°
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Condition (ii) is satisfied because «;, is a highest root in b,_, , and so
by structure theory the roots of b,_, which do not commute with +q; are
split into pairs B, B + «;. It is then easy to see that f; splits as the sum
of vector subspaces b, ;N (gﬂ +8_ptop, * g—ﬂ—ai) , and each of these
is a representation of 2, of the required form. g.e.d.

It will now be shown that a decomposition of this form is just what is
needed to define a hypercomplex structure on U(l)k x G for some k.

Theorem 4.2 [6]. Let G be a compact Lie group. Then there exists
an integer k with 0 < k < Max(3, rkG) such that U(l)k x G admits a
homogeneous hypercomplex structure.

Proof: By Lemma 4.1, the Lie algebra g of G admits a decomposition

n k
(7) =b+> 0+ f
k=1 k=1
satisfying certain conditions. Now either dimb < n or dimb > n. If
dimb < n, define kK = n —dimb, and 0 < k <1k G; let m = 0.
Otherwise choose k =0, 1, 2, or 3 such that dimb+ &k =n+4m for m
some positive integer.

The Lie algebra of U(l)k x G 1s ku(l) + g. We will define a hyper-
complex structure on this Lie algebra, which gives an almost hypercomplex
structure on the group by left translation, and use Samelson’s character-
ization of homogeneous complex structures on groups to show that the
complex structures are integrable, and thus that the almost hypercomplex
structure is hypercomplex.

Choose an identification (of real vector spaces) of ku(1)+b with H" +
R" ; by abuse of notation we will write ku(1)+ b = H” + R". Note that
there is a freedom in doing this of (n + 4m)2 parameters. In general
this will mean that there are infinitely many nonisomorphic hypercomplex
structures on U(l)k xG. Let (e, - ,e,) be the standard basis for R".

For each k, choose an isomorphism ¢, from su(2) to v, . (There are
3n parameters of freedom in doing-this, but the different ways will lead
to hypercomplex structures isomorphic up to conjugacy.)

Now the Lie algebra su(2) may be written as (i, i,, i;), where i,
i,,and iy satisfy [i,, i,}=2i;, [i,, i5] = 2i;,and [i;, {;] = 21, . Define
complex structures I,, I,, I, on g by components as follows:

(a) Let the actions of I,, I,, I, on H" be as usual.

(b) Let the actions of I,, I,, I; on R" + 3,0, be given by I,(e,) =
6,(i,), I(,(i)) = —¢; and I, (,(i) = 6,(1,), L(#,(i,) = —o,(iy)

whenever (abc) is an even permutation of (123).



754 DOMINIC JOYCE

(c) Let the actions of 1, I,, I, on ;i be given by [ (v) = [v, qu(ia)]
for each v € fi

The proof of Theorem 4.2 will be completed by the following lemma.

Lemma 4.3. The I, I,, I, defined above are complex structures on
ku(l) + g satisfying 1,1, = I, and the almost complex structures on
U(l)k x G generated by left translation are integrable.

Proof. For the first part, it is clear that parts (a) and (b) lead to com-
plex structures I,, I,, and I, satisfying I,I, = I, on their respective
components, so it remains only to verify this for part (c), that is, for f IT
But from condition (ii) of Lemma 4.1 it can be seen that the action of 3,

on f; by conjugation is isomorphic to the action of ImH on H' for some
!/, and (c) is just a way of writing down this isomorphism.

So I,, I,, I, do form a hypercomplex structure on ku(1l)+ g. Using
Samelson’s results it will now be shown that they generate homogenecous
complex structures by left translation.

Let a be 1, 2, or 3. Define t by
(8) t=H"+R"+($,(,), - > d,(i,)3
then t is the Lie algebra of a maximal torus 7° of U(l)k xG. Let V C
ki(1) + § be the vector subspace of (1, 0)-forms of I in kii(1) + §.
We will construct a basis for ¥ involving a positive system of roots for
kii(1)+§ relative to t, and hence by Samelson’s results show that I gives
an integrable complex structure on U(l)k xG.

We describe V' by components (a), (b), (c) as above.

(a) The (1, 0)-forms of H” with respect to I, are as usual.

(b) The (1, 0)-forms of R" + 3 v, are

(9) <€1+i¢l(ia), T €n+i¢n(ia), ¢1(ib)+i¢1(ic)s ) ¢n(ib)+i¢n(ic));
where (abc) is an even permutation of (123). Now e; + i¢,(i,) is an
element of {, and ¢, (i) + i¢,(i,) is a root vector of § relative to t. Let
a; be the root corresponding to the root vector ¢,(i,) + i¢;(i,) . Also
[6,(1,), 6,(i,) + i, (i)] = — 2i($ (i) + id(i,)

= a;(9;(i))(9;(1y) + i¢;(0.)),
and so «a;(¢;(i,)) =—2i. Thus aj(i¢j(ia)) > 0. (Note that B(i¢;(i,)) 1s

J
real for all roots f.)

(c) Now we claim that the (1, 0)-forms of j , are given by

(11) Vni, = > 8>
BEA; 1 B#a;,
B(ig;(i,))>0

(10)
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in other words, the sum of all root subspaces of b i corresponding to

roots f other than «; that have B(i¢;(i,)) > 0. Recall that in the

proof of Lemma 4.1 it was shown that fj splits into subspaces of the

form 9 + 85,4 T8_5+68_g5_, ,upON which the representation of 0, is
7 J

the complexification of the standard representation of su(2) upon i

is an easy calculation to show that the (1, 0)-forms of this subspace are

8510 T8 4> which verifies the claim, since by structure theory we have
.'] - . .

o (i¢,(i,)) = —2B(id (i,)).

Now the roots of b ; are exactly the roots of § that give zero when eval-

uated upon ¢,(i,), - , ¢ j(ia) , because these are the roots that centralize
0,00, 05 So define a subset P of A, the set of roots of §, by
(12) P={acAia(d(i))="=a¢,_(i,)=0

a(i¢j(ia)) > 0 for some j € {1,2,---, n}}.

Then P is a positive system (as defined above). But by examination we
see that . '

(13) V=Vni+> g,

. a€EP

So V, the (1, 0)-forms of I, are the sum of the (1, 0)-forms of some
complex structure on t together with a positive system of roots. Therefore
by [5], the left translation of I, gives a homogeneous complex structure
on -U(l)k

4.2. General homogeneous hypercomplex manifolds. The previous sec-
tion extended Samelson’s result on existence of homogeneous complex
structures on even-dimensional groups to the hypercomplex case. In this
section we extend some of Wang’s results on existence of homogeneous
complex structures on general homogeneous manifolds to the hypercom-
plex case. His Theorem II 8, p. 15] states:

Let X be a C-subgroup of a simply-connected compact semisimple Lie
group K. If K/X is even-dimensional, then K/X has a homogeneous
complex structure.

Here a C-subgroup of K 1is a closed and connected subgroup whose
semisimple part coincides with the semisimple part of the centralizer of a
toral subgroup of K.

This theorem of Wang generalizes Samelson’s result. An extension to
the hypercomplex case will now be given; it will be seen that the restrictions
on the subgroup X are quite severe.

First we make some definitions. Let G be a compact Lie group. We may

choose.a maximal torus H , and decompose § into weights with respect



756 DOMINIC JOYCE

to h. If a is any highest root, then there is a subalgebra of § isomorphic
to s1(2, C) generated by g, and the intersection of this with g is a
subalgebra of g isomorphic to su(2). Define a D-subgroup of G to be
the centralizer in G of any such su(2) embedded in g that comes from
a highest root in this way.

Now we define an E-subgroup of G to be any subgroup E of G such
that there is a chain of subgroups and inclusions

(14) G=G,5G,>->G,=E,

such that G, | is a D-subgroup of G,. We call j the length of E; it is
well defined.

The hypercomplex version of Wang’s result quoted above is:

Theorem 4.4. Let G be a compact Lie group, and let E be an E-
subgroup of G of length j. Let F be the semisimple part of E, and let
X be any closed subgroup of G such that F C X C E. Then there exists
an integer k with 0 < k < max(3, j) such that U(l)k x G/X admits a
homiogeneous hypercomplex structure, that is, one that is preserved by left
translations in U(l)k xG.

Proof. The proof is very similar to the proof of Theorem 4.2, but using
where appropriate, ideas from [8] instead of ideas from [5], so it will only
be briefly sketched. Using the definition of the E-subgroup E, one may
carry out a decomposition of g into subalgebras b;, 9;, and subspaces f;
as in Lemma 4.1, but instead of stopping when b, is abelian, we stop at
b, =e, where j is the length of F and e is the Lie algebra of E. Now
X lies between E and F, so ¢ is just r plus the Lie algebra of some
torus. As in the proof of Theorem 4.2, choose a suitable k£ and define a
hypercomplex structure on ku(1)+g/r. Then a similar analysis to that of
Lemma 4.3 shows that the complex structures /,, I,, I, give integrable
complex structures when extended over the space by left translation, using
methods of Wang [8].

(Note that to be able to define the left translation of the complex struc-
ture it is necessary that it should be invariant under conjugation by X .
This is true because the complex structures are defined using a sequence
of highest roots, and X is a subgroup of the centralizer of these roots.)

4.3. Examples. As by Theorems 4.2 and 4.4 every compact Lie group
provides examples of homogeneous hypercomplex spaces, just a few in-
teresting cases will be given. The hypercomplex structures on U(2) and
SU(3) are the first examples of hypercomplex structures on the families
U(2n) and SU(2n + 1), and more generally on U(2k +1)/U(l). Also,
inclusions of groups can lead to inclusions of hypercomplex manifolds;



COMPACT HYPERCOMPLEX AND QUATERNIONIC MANIFOLDS 757

for instance, U(1)" x Sp(n) can appear as a hypercomplex submanifold in
U(1)*" x SO(4n), if the sequences of highest roots are chosen in a suitable
way.

We will give U(1) x SO(6) as a worked example of Theorem 4.2, and
as a worked example of Theorem 4.4 a preity, compact, simply-connected
hypercomplex 12-manifold: if SU(2) is embedded in U(3) c SO(6), it
will be shown that SO(6)/ SU(2) is hypercomplex. Let G be SO(6), and
H, a maximal torus, be the diagonal matrices in U(3) C SO(6). The
L1e algebra § of H is then the set of matrices in u(3) C so(6) of the
form diag(id,, i4,, id,), ,1 € R. Define coordinates (x,, x,, Xx;) on "
such that (x,, x,, x3) is the element of h* taking diag(id,, i4,, id;) to
2(x,4; + X4, + X345)

In these coordinates the twelve roots of SO(6) are given by (i, =i, 0),
(xi, 0, £i), (0, =i, +i). These roots are all equivalent under automor-
phisms of G preserving H, so every root is a highest root. Choose
(1, i, 0) as-a highest root to generate d, . This gives

(15) 5, = (diag(i, 1, 0)) + 84100+ Si 1.0

fl turns out to be the sum of the eight root spaces of the roots (+i, 0, £i),
(0, +i, +i), and b, is

(16) b, = (diag(i, —i, 0), diag(0, 0, i)) +8, —i00F 8i,1,0)
There is then only one choice for 9, :
(17) 0, = (diag(i, =i, 0)) +8; _; o)+ 8_i.i,0)>

and we have §, = 0 and b, = (diag(0, 0, f)), which is abelian. So n =2,
and this completes the decomposition of Lemma 4.1. To apply Theorem
4.2, we must have k such that dimb, +k = n + 4m for some m; here
n=2 and dimb, =1,s0 k=1 and m = 0 will do. Thus by Theorem
4.2, U(1) x SO(6) is hypercomplex; the freedom in the hypercomplex
structure is the freedom to choose a basis (e, , €,) of u(l)+b,, and so is
of four real parameters.

To apply Theorem 4.4, we follow the decomposition of so(6) above,
but stop at e = b, . The semisimple part of ¢ is

(18) }: (dlag(l’ —i’ O)>+g(;’,_i,0)+g(_j,j,0)’

and to apply Theorem 4.4 we must choose X such that ¥ C X C E. Let
X = F; then X is given by

40
(19) X={( 0) :AeSU(2)}cU(3)cSO(6),
00 1
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and ¢ =+ (diag(0, 0, 7)) is the splitting of ¢ into r and the Lie algebra
of a torus. To make a hypercomplex structure we now need to take the
product with U(l)k for suitable k. But because the length of £ is 1
and there is one dimension left over of the maximal torus, generated by
diag(0, 0, i), we-can take k = 0. The freedom in making the hypercom-
plex structure is the freedom in choosing a basis (e¢,) for (diag(0, 0, 7)),
and so is of one real parameter. So by Theorem 4.4, G/X = SO(6)/SU(2)
is a homogeneous hypercomplex manifold.

5. Homogeneous quaternionic manifolds

There is one obvious source of homogeneous quaternionic manifolds:
if a quaternionic manifold has a homogeneous associated bundle, then it
will be homogeneous. As the associated bundle of a quaternionic manifold
is hypercomplex, we can construct homogeneous quaternionic manifolds
from homogeneous hypercomplex manifolds.

In general, this sort of homogeneous quaternionic manifold will be of
the form G/U(2)X, where G/X is a compact homogeneous hypercom-
plex manifold, and U(2) embedded in G centralizes X, descends to a
hypercomplex submanifold in G/X , and the action of U(2) on the right
on G/X permutes the complex structures in the way that H* does it
itself by left multiplication. The problem, then, given a homogeneous hy-
percomplex manifold G/X as from the last section, is to find a suitable
embedded (or immsered) U(2) . Let the embedding be ®, so that in terms
of Lie algebras we seek a Lie algebra endomorphism &®: u(2) — g.

This can be done using the method of construction of the last section,
which involves a sequence of highest roots. Using the notation of Theorem
4.2 ®(su(2)) must be
(20)

(D(su(z)) = (¢1(11) +-- +¢n(i1) > ¢1(12) +-- +¢n(i2) > ¢1(l3) +-- +¢n(i3)) .

This is because the hypercomplex structure is defined using ¢,(su(2)) , and
so to permute the complex structures in the necessary way, the Lie bracket
with ®@(su(2)) must act on ¢,(su(2)) as the Lie bracket with itself.

Recall that we said that ®(U(2)) should be a hypercomplex submani-
fold of G/X . This will be true only if ®(u(2)) is closed under 1, , I,,
I, . This requirement determines the fourth basis vector for ®(u(2)): it
is e, +---+e,. So put

(I)(u(z)) = (el +e,, ¢1(i1) + - +¢n(i1)=

21
@y Gy(iy) &+ 0, (), bilis) 4o+ b (i)
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Then ®d(u(2)) is a subalgebra of g isomorphic to u(2), and we can:
form the subgroup of G generated by it. But this subgroup may not be
an embedding, or even an immersion, of U(2), because it may not be
closed. When #n > 1 this is a nontrivial condition upon the hypercomplex
structure chosen on G/X in §4, and is a rationality condition, as it simply
says that the center of the embedded U(2) (generated by e, +---¢,) should
be a closed subgroup of the maximal torus of G. The condition therefore
holds for a dense subset of the homogeneous hypercomplex structures on

G/X constructed in §4.

Suppose that this rationality condition holds for the ch01ce of hyper-
complex structure on G/ X . Then the Lie algebra endomorphism & lifts
to give a group homomorphism &: U(2) — G which is an embedding or
an immersion. ,

Proposition 5.1. G/P(U(2)).X is a compact, homogeneous quaternionic
manifold.

Proof. Let U(1) x U(1) c U(2) be the subgroup of U(2) preserving
the complex structure I, on G/X. Define Z = G/P(U(1) x U(1))X .
Then Z is complex with complex structure I, , as it is the quotient of
G/X by ®(U(1) x U(1)), which is a complex group with respect to I, .
Also Z fibers over G/®(U(2))X with fiber U(2)/(U(1) x U(1)) = CP',
and it has a antiholomorphic involution ¢ preserving the fibers induced
by ®(x), where x is any element of SU(2) that anticommutes with the
U(1) ¢ SU(2) already fixed, and ¢ is antiholomorphic because acting on
the right on G/X it takes I, to —1,.

So for Z to be a twistor space for a quaternionic structure on
G/P(U(2))X, we only need to show that the normal bundle of fibers is
2a(1) for some integer a; by homogeneity it is enough to see this for the
identity fiber ®(U(2))X/X . Let v be the normal bundle of ®(U(2))X/X
in G/X . As ®(U(2))X/X is a hypercomplex submanifold of G/X , which
is hypercomplex, the total space of v is hypercomplex. The left action of
®(U(2)) on v preserves this hypercomplex structure and identities all the
fibers; thus it gives a trivialization of v .

This does not trivialize v as a holomorphic bundle, as the flat connec-
tion on U(2) it is associated with is not torsion-free. However, it can be
seen that as a hypercomplex manifold, the total space of v only depends
upon a and the hypercomplex structure of ®(U(2))X/X : the Lie algebra
structure in the normal directions does not affect the hypercomplex struc-
ture of v. So the normal bundle of ®(U(2))X/X in G/X is isomorphic
as a hypercomplex manifold to a standard example.

As this standard example, let G be GL{(a+1, H). Then G acts transi-
tively on H**! /Z, where Z acts by dilation; we choose the action of Z so
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that H/Z C H**! /Z and ®P(U(2))X/X are isomorphic as hypercomplex
manifolds. Let X be the stabilizer of a point. Thus v is isomorphic
to the normal bundle of H/Z in JH[‘”I/Z, so dividing by U(1) x U(1),
the normal bundle of the identity fiber in Z is isomorphic to the normal
bundle of CP' in CP***!, which is 2aZ(1). q.e.d.

We should point out the connection between G/X and the associated
bundle of G/®P(U(2)).X: in general G/X can be constructed from the
quotient of the associated bundle of G/P(U(2))X by a dilation action of
Z, by twisting by some homogeneous quaternionic U(1)-connection on
G/®(U(2))X, as in the first part of this paper.

5.1. An example. We consider the case of G = SU(5), X trivial,
which is a simple example of what can happen when # > 1. Choose as
highest weights the SU(2)’s embedded as 2x2 matrices in the first, second
and third, fourth diagonal positions of the 5x 5 matrix. The construction
gives that SU(5)/®(U(2)) is quaternionic, where

00 O
4 00 0
(22) ®(SU(2)) = 00 4 0]:4eSU(2);,
00 0
00 00 1
and ®(U(1)) is some closed subgroup of
00 00 0
o1 00 00 0
(23)  U(l)xU(1) = 00 0l 0 10, neU)
00 0

00 00 6 %2

here I is the 2 x 2 identity matrix.

Now the important point is that for different choices of closed subgroup
d(U(1)), SU(5)/P(U(2)) will have different topology. This one example,
then, provides us with an infinite collection of distinct, compact, simply-
connected quaternionic manifolds, and in fact each of these manifolds has
infinitely many distinct quaternionic structures. )

5.2, Different types of homogeneity. Above we have given a way of
making homogeneous quaternionic manifolds. Perhaps all compact ho-
mogeneous quaternionic manifolds with homogeneous associated bundle
arise in this manner. But what about homogeneous quaternionic manifolds
for which the group is not big enough to act transitively on the associated
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bundle? In the first part of this paper an example of this phenomenon was
given: a quaternionic structure on SU(3) was made with symmetry group
U(3), which is of too small dimension to act transitively on the associated
bundle.

The quaternionic structure on such a homogeneous space G/X is given
by a hypercomplex structure upon g/x. One approach to finding integrabil-
ity conditions for a quaternionic structure specified in this way is to define,
using linear functionals, first-order sections of the bundle of complex struc-
tures, and require that the Nijenhuis tensor of these sections should vanish.
In this way we have shown that each of the homogeneous hypercomplex
manifolds defined in §4 also admits homogeneous quaternionic structures
that are not hypercomplex. The method is to construct a hypercomplex
structure on the quotient of the Lie algebras using a sequence of highest
roots as before, but instead of putting a standard hypercomplex structure
on each of the embedded u(2)’s to choose a hypercomplex structure cor-
responding to a quaternionic structure on U(2) that is not hypercomplex.
The calculation mentioned above then shows that the almost quaternionic
structure defined by translation is quaternionic, but not hypercomplex.
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